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Smart water systems need (smart) tools

| | =

ﬂ Different t_echnolog?es, cen_tralized and. \ ( » Holistic models that provide an overview on the \
decentralized, applied at different spatial scales water systems (and their multiple interactions) are
(household, neighborhood, region, city). needed.

* Complex systems where multiple water flows » These models are used to support decisions on
interact (DW, RW-SW, GW, WW). the optioning, design and preliminary assessment

= Water systems become digitized — more sensors, process.
higher resolution data, more data integration. * The models need to be able to receive data from
Energy, environmental and social (behavioral, end- \ multiple sources (and be FAW-aware) J

\ user) aspects need to be considered as well.
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Introduction

UWOT: A modular simulation engine for

smart water systems

(Bottom-up, component \

based urban water circle
model.

Multiple components,
multiple technologies (DW,
WW/GW, RW/Runoff)

(

\_

Built in C/Python, able to
simulate flows on a
daily/hourly time step, in
scenarios that span
years to decades.

\

_
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Able to assist smartness in water, by
modeling a range of decentralized,
distributed interventions: RWH, GWR, blue-
green areas, smart appliances and
estimate water quantity and quality.

Able to assimilate (time-series, parameter)
data from multiple sources.

Able to construct scenarios based on socio-

economic assumptions.

Provides links with water and energy, water

and nutrients.

Conclusions

Methodology
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« Part of a toolbox that addresses
water issues in various thematic
areas.

» Accessible to Watershare
partners
(https:/mwww.watershare.eu/)
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How does it work?

Signal-based, from demand nodes to
sources

Add household appliances, mix
them together under different
households.

Include rainwater management
and (potential) greywater
recycling components.

Log stored water, covered
demands, required energy at
each time step.

View results for a specified
scenario-topology (set of techs).
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Not only simulation...

o VivZ, VR

SCENARIO DEVELOPMENT SIMULATION IN UWOT V\«/\/x_/\\/ POST PROCESSING ASSESSMENT

m Rainfall input X Load data
S l G Assessment

Py L Define KPIs ¢ ovet
o1 system
technolo Household appliances, *2 \\ uwort o \\ 5 of 4
gy RWH, GWR, SUDS \ Simulation Runs I \ periormance
L A ® f(Y1,Y2,..Yk)
Occupancy, client ™ \ UWOT Output Calculate KPIs
habits (frequency of use) ! {X1,X2,...Xn} (time series) T
- /L/\,fh\r// 1 kP16~
i Define design | try another design | sl e Lo
try another scenario parameters KPis

Source: Bouziotas et al., 2019

Allows comparison of
scenarios that are
derived from different

Includes dashboard

: ! Allows fine-tuning the tools to aggregate
climate, technical and design in a particular outcome and present
socio-economic scenario (capacity of it to stakeholders.

backgrounds.

different components,
sizes of tanks etc.)
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Applications (2012-present)

Early applications (NTUA) NextGen demo cases
Resilience Framework (Athens, Westland)

2O
Q
2012-2018 v

Circular water neighborhood
design SUPERLOCAL-WICE
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Circular neighborhood design
SUPERLOCAL (Limburg, NL)

Target
Slower runoffresponse

Lower flood peaks
Rainwater absorbed locally

* Less water use per household

Water recycledlocally
WW treated locally

(B ~WaterSmart

RWH
Local RW buffer (storage)
Infiltration basin (SUDS)

Vacuum toilets i
Water-saving/recirc. showers [0
Common laundry space for some units U

RWH toDW

GWR | treats WW back to specific uses
Local treatmentunits for RW/GW

BW stream (toilets, food grinders)

wml

Limburgs drimkwater
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Scen A:

Distinct decentralized
systems (RWH/GWR)
Scen B:

Combined recycling
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DW asked centrally / WW
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- SCEN_B (RWH+GWR) more
efficient / relies on a ‘steadier’
source of treated GW
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Towards Circular Water Neighborhoods:
Simulation-Based Decision Support

for Integrated Decentralized Urban
Water Systems
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Demonstrating circular economy principles in water: a local pilot
for sewer mining in Athens Urban Tree Nursery area

@EYDAP |

BIOPOLUS 2=~

Gotland (SE)

Sewer mining pilot in Athens Nursery
area:

wd

Westland Region (NL)

. decentralized WW treatment option The Living Technology Allance

(MBR treatment) - )
. Intermediate, localized water reuse

option Urban Tree |

. modular treatment units that can be Nursery

placed anywhere on the network

. production of non-potable treated
water (25 m3/day)

. placement at point of demand (urban §&

green spaces)
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Role of UWOT in Athens:

» Support model for different pilot
layouts (multiple modular units)
+ Calculation of BOD

concentration based on WW
influx

(B ~WaterSmart
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Article

Sewer Mining as a Distributed Intervention for
Water-Energy-Materials in the Circular Economy Suitable for

Dense Urban Environments: A Real World Demonstration in
the City of Athens

Plevri '*, Klio 10, Christos P 1, Christos Lioumis *, Nikolaos Tazes %,
Eifthymios Lytras *, Stylianos Samios 7, Georgios Katsouras * and Nikolaos Tsalas *
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An Urban Water Simulation Model for the Design,
Testing and Economic Viability Assessment of
Distributed Water Management Systems for a
Circular Economy *
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Department of Water 4 Envi iE School of Civil tionsl
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ilar economy, public service provision and
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gDemonstrating circular economy principles in water:
@towards a circular water province

Circgfir system jinterventi@ns” (pathways)

. Baseline

B s ¢ 1
(, A
Rain- Circular Water-

25% of hh's have
ro 0 f circular system
p (RWH/GWR)
25% of hi's have RWH Seshion b
GHs rely on RW basins

25% of hh’s have

A " ] circular system
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Conclusions

« UWOT s a bottom-up (component-based), spatially agnostic water balance (watercycle) model. It simulates urban water
demands, for purposes of optimizing the planning and assessment of distributed interventions in the urban water cycle.

»  Suitable for generic smart water system studies at different scales (household, neighbourhood, region, city).

*  Tested against multiple cases, developed over diverse projects (household smart water applications, city-scale
modelling, green-blue area design, innovative pilots, circular neighbourhood design)

+ Applications in B-WaterSmart: Flanders (regional, multiple smart water options), East Frisia (local, industrial waste
reuse)
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Thank you for your attention!

Stavroula Manouri,
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